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• Novel methodology developed to analyse the spatial relationship between the lipidome and TME of patient biopsies within a single-tissue section
• Preliminary results suggest that NUC-7738 ± pembrolizumab reprograms cancer cell lipid metabolism in the TME
• This platform provides a powerful investigative tool to simultaneously explore the myriad of factors in the TME that contribute to tumorigenesis and    
 therapeutic response
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• Cancer cells adapt to hypoxic and nutrient deprived environments by reprogramming
  lipid biosynthesis to accelerate malignant behaviour1

• Lipids are not only structural components of cell membranes but also serve as signaling  
 molecules within the tumor microenvironment (TME) to modulate immune cells2

• Cancer cells transitioning to a malignant phenotype demonstrate marked changes in
  lipid metabolism including: 
 • Changes in the ratio of monounsaturated fatty acids (MUFAs) to polyunsaturated
   fatty acids (PUFAs) 
 • Dysregulation of sphingolipids, crucial for tumor progression and survival 
• Reprogramming lipid metabolism within the TME is a recognised strategy for boosting
  the effects of immunotherapy3

• Dimension reduction analysis (UMAP) of data (>1000 lipids) reveals distinct regions
 within each biopsy

• NUC-7738 + pembrolizumab changes the balance of  fatty acids in favor of PUFAs,
  indicative of a shift towards a less aggressive oncogenic phenotype
• MUFAs have been linked to malignant behaviour and resistance to chemotherapy whilst
  PUFAs have  been associated with susceptibility to reactive oxygen species and ferroptosis⁴

• NUC-7738 + pembrolizumab causes a reduction in levels of HexCer species in tumor area
• HexCer, a subclass of sphingolipids are anti-apoptotic and associated with
  chemoresistance in melanoma patients⁵

• Pro-apoptotic ceramide (Cer) species increase following treatment

• Pro-apoptotic ceramide (Cer) species increase following treatment with NUC-7738          
 corresponding with a decrease in protein expression of acid ceramidase (AC) which hydrolyses   
 ceramides into sphingosine and is associated with tumor progression⁶  
• β-galactosylceramidase, a key enzyme in sphingolipid metabolism often upregulated in       
 melanoma progression and associated with poor prognosis⁷ decreases following NUC-7738    
 treatment
• Protein expression of Cytochrome C, a marker of apoptosis increases following treatment
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• Quantification of individual cell types within distinct metabolic regions of the tissue show  
 which cell types may be driving changes in lipid signatures

•  The emergence of two distinct classes of lipids suggests NUC-7738 ± pembrolizumab   
  changes the lipidome in the melanoma TME

Figure 2: Multi-Modal Imaging Workflow for 10µm single-section tissue analysis

Figure 1: In nutrient deprived conditions cancer cells increase lipogenesis, fatty acid uptake via CD36 and fatty 
acid oxidation (FAO). Cancer cells rich in monounsaturated fatty acids (MUFA) prevent ferroptosis. Alterations in 

sphingolipid biosynthesis cause accumulation of the pro-tumorigenic and immunosuppressive 
sphingosine-1-phosphate (S1P) in the TME.

Figure 3: PCA 2D scores plots of lipids in tumor regions from biopsies pre- and post-treatment (A, mucosal and B-F, 
cutaneous melanoma). ROI were selected by high-magnification analysis of viable tumor regions of H&E-stained 

sections following DESI-MSI.

Figure 4: A) Post DESI-MSI H&E section, B) multiplex immunofluorescence (mIF) of DAPI co-localised with; s100 
positive cells (indicative of malignant  melanoma), CD 8 positive cells (T cells), CD 206 positive cells (macrophages) 

and PD-1 positive cells. C) UMAP segmentation of single 10µm section based on UMAP cluster data.

Figure 5: A) UMAP segmentation integrated into HALO AI analysis software as annotation layers. B) annotation 
layers applied to fused mIF and mIHC images. C) population of cells in each annotation layer determined by random 

forest classification.

Figure 6: DESI-MSI ion heatmaps show spatial distribution and a decrease in the relative abundance of three MUFA 
species and increase in three PUFA species in viable tumor regions following NUC-7738 + pembrolizumab treatment

Figure 9: mIF of 3µm FFPE section show a decrease in the protein expression of key lipid metabolizing enzymes and an increase in the apoptotic marker cyt c following NUC-7738 treatment

Figure 8: DESI-MSI ion heatmaps show spatial distribution and a significant increase  (|d| > 3) in the relative 
abundance of three Cer species in viable tumor regions following NUC-7738 treatment 

Figure 7: DESI-MSI ion heatmaps show spatial distribution and a significant decrease (|d| < 5) in the relative 
abundance of three HexCer species in viable tumor regions following NUC-7738 + pembrolizumab treatment
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• Snap frozen and FFPE biopsies were collected from 6 patients (1 x mucosal melanoma and 
 5x cutaneous melanoma) treated with NUC-7738 ± pembrolizumab. Biopsies were       
 collected pre- and post- drug infusion (≤6h post infusion).
• TIC normalised data was exported into MetaboAnalyst 5.0 for statistical analysis
  (SAM, PCA, fold-change). LIPID MAPS® Structure Database was used to tentatively assign  
 lipid species.

• NUC-7738 generates   
 sustained intracellular levels   
 of 3' deoxyadenosine   
 triphosphate (3'-dATP), which   
 profoundly alters RNA   
 regulatory processes in tumor   
 cells, resulting in changes in   
 expression of proteins
  related to lipid metabolism
• Using paired biopsies from   
 patients treated with treated   
 with NUC-7738 ±   
 pembrolizumab, we aim to   
 investigate the potential role   
 of NUC-7738 as a lipid 
 reprogramming agent
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